DGMK 746

Experimentelle und numerische Analyse des Polymerflutprozesses unter Verwendung von Mikromodellen

Laufzeit

01.01.2018 - 30.06.2020

Beschreibung

Polymerfluten ist ein Verfahren zur mobilitätskontrollierten Entölung von Lagerstätten. Aufgrund des Entölungsmechanismus, des geringen anlagentechnischen Aufwandes und der relativ niedrigen Kosten gehört es zu den risikoarmen und oft auch wirtschaftlich attraktiven Enhanced Oil Recovery (EOR) Methoden. Das Verständnis der nicht-linearen physikalischen und chemischen Prozesse, die das Polymerfluten dominieren, spielt für die effiziente Auslegung von Polymerflutprojekten eine entscheidende Rolle. Ziel des Projektes ist die grundlegende Analyse dieser Prozesse unter Verwendung von Mikromodellen.

Bei der Betrachtung des Polymerflutprozesses müssen die Eigenschaften des Erdöls, der Polymerlösung, aber auch die Interaktion zwischen den Fluiden sowie die Wechselwirkungen zwischen Fluiden mit dem Gestein verstanden werden. Der Ansatz, Mikromodelle für die Erforschung des Polymerflutvorgangs zu verwenden, bietet die Möglichkeit, verschiedenste Effekte die im Rahmen von Polymer EOR eine Rolle spielen, zu visualisieren und detaillierter zu untersuchen.

Im Vergleich zu Flutversuchen an Kernen ermöglichen Mikromodelle einen detailreichen visuellen Zugang zum Flutprozess. Dadurch kann die lokale Verteilung statischer und dynamischer Strömungsparameter am Modell abgelesen werden, was eine grundlegende Untersuchung des Flutvorgangs ermöglichen soll.

Aktuelle Phase 3

Die letzte Phase des Projektes soll die Anwendung der in den ersten beiden Phasen des Projektes entwickelten Mikrofluidik auf weitere Bereiche, wie der Produktionsoptimierung, prüfen. Interessante Fragestellungen beziehen sich hier auf die Stabilität von Schäumen im porösen Medium, die Ablagerung von Asphaltenen und deren Entfernung oder der Filtration von Bohrschlämmen. Darüber hinaus sollen das Design und die Produktion von Modellen bei der Entwicklung neuer Chips mit einer Permeabilität im Bereich von wenigen hundert Millidarcy weiter vertieft werden. Dabei wird die Porenstruktur einer natürlichen Gesteinsprobe imitiert und deren Eigenschaften auf ein zweidimensionales Modell übertragen. Die Validierung der Ergebnisse aus den Mikrofluidik-Experimenten erfolgt mittels Kernfluten in dem für das Design verwendetem Gestein. Außerdem werden Methoden zur Veränderung der inneren Oberfläche, die initial wasserbenetzende Eigenschaften aufweist, durch Adsorption einer selbstorganisierende Monoschicht (SAM), entwickelt.

Vorherige Projektphasen

Phase 1

Abgeschlossen in in 2014. Diese erste Phase des Projektes der Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e.V. wurde unterstützt von ExxonMobil Production Deutschland GmbH, GDF SUEZ E&P Deutschland GmbH, RWE Dea AG und der Wintershall Holding GmbH.

In der ersten Phase des Projektes wurden eigene Mikromodelle entwickelt, die einige Besserungen im Vergleich zu kommerziell erältlichen Modellen aufweisen. So handelt es sich bei den am ITE entwickelten Modellen um ein "Sandwich" aus zwei Glasschichten, die die pröse Schicht aus Silizium umschließt. Damit weisen die Modelle wasserbenetzede Oberflächeneigenschaften auf, ähnlich wie die Sandsteine, die in vielen Lagerstätten vorhanden sind. Des Weiteren sind die Modelle beständig gegen die meisten chemischen Einflüsse und können hohen Temperaturen und Drücken stand halten. Als poröse Strukturen dienten künstliche Strukturen, sowie eine realitätsnahe Struktur basierend auf dem Dünnschliff einer Gesteinsprobe. Der Fluss quer durch das quadratische Micomodell, welches nach dem Vorbild eines "Quarter-to-five-spot" Bohrlochmusters konzipert wurde, ermöglicht die Analyse des Wirkungsgrades der vertikalen Verdrängung.
Für die Durchführung der Versuche wird ein experimenteller Aufbau inklusive Halter für das Modell konzepiert, der die fortlaufende Bildaufnahme der porösen Struktur und den durchfließenden Medien, sowie die Drücke vor und nach dem Modell aufzeichnet. Die Auswertung der Messwerte und des Bildmaterials erfolgt automatisch über Algotithmen, die den Anteil verschiedener Fluide berechnet. Eine Simualtions-Toolbox ermöglicht darüber hinaus die nummerische Analyse der Versuche.
Für die Analyse von Polymeren wurde für eine Auswahl unterschiedlicher Produkte relevant für Enhanced Oil Recovery (EOR) die Rheologie bei unterschiedlichen Konzentrationen, Temperaturen und versschiedenen Anmischwässern variierenden Salzgehaltes- und zusammensetzung bestimmt. Die Ergebnisse wurden in einer Datenbank gesammelt und geordnet.
Nach einigen Einphasenversuchen mit newtonischen und nicht-newtonischen Fluiden wurden EOR Versuche mit Polymeren im sekundären (Polymerfluten in dem mit Öl gesättigten Modell) oder tertiären Modus (Polymerfluten nach einem Wasserflutversuch) Modus durchgefüht. Die erhaltenen Daten wurden zur nummerischen Analyse und Simulation von Flutversuchen im Mikromodell verwendet.

Phase 2

Abgeschlossen 2017. Diese zweite Phase des Projektes der Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e.V. wurde unterstützt von ExxonMobil Production Deutschland GmbH, Neptune Energy Deutschland GmbH, DEA Deutsche Erdoel AG und der Wintershall Holding GmbH.

In der zweiten Phase des Projektes wurden die experimentellen Aufbauten erweitert, um eine Versuchsdurchführung bei hohen Temperaturen durchzuführen. Zum Vergleich der experimentellen Ergebnisse aus den Mikrofluidikversuchen wurde eine Kernflutanlage errichtet. Hier wurden Flutversuche am Bentheimer Sandstein durchgeführt. Für einen Vergleich mit der Mikrofluidik, wurden neue Chips entwickelt, deren poröse Struktur von einem µCT Scan eines Bentheimer Sandsteins abgeleitet wurden und deren Porosität und Permeabilität mit realen Gesteinsproben vergleichbar sind. Anstelle der "Quarter-to-a-five-spot" Konfiguration wurde eine lineare Geometrie der Modelle gewählt für den direkten Vergleich mit Kernflutversuchen. In verschiedenen Einphasen- und Mehrphasenversuchen in Mikromodellen, Kernen und Sandschüttungen wurden Messdaten gesammelt und die Ergbenisse im Simulator nachgestellt. Darüber hinaus wurden für Biopolymer- und HPAM-Lösungen erweiterte rheologische Untersuchungen durchgeführt, neben der Standartrheologie unter anderem auch oszillierende Messungen und Bestimmung der Dehnviskosität.

Publikationen

In Büchern und Zeitschriften
  • Födisch H. 2019. Investigation of Chemical Enhanced Oil Recovery Core Flooding Processes with Special Focus on Rock-Fluid Interactions. Papierflieger Verlag, Clausthal-Zellerfeld. ISBN: 978-3-86948-697-0.
  • Wegner J, Ganzer L. 2017. How Microfluidic Solutions using a rock-on-a-chip approach look set to revolutionise IOR/EOR process visualisation. Oilfield Technology Junal 7: pp. 15-18.
  • Duffy J, Hincapie R. 2016. Using Rheology to Optimize the Performance of EOR Fluids. Oil and Gas Innovation Magazine 10: 42-43.
  • Rock A, Hincapie R, Wegner J, Födisch H, Ganzer L. 2016. Pore-scale Visualization of Polymer Viscoelasticity Using Particle Tracing in Glass-Silicon-Glass Micromodels. EAGE first break 34: DOI 10.3997/2214-4609.201600917.
  • Födisch H, Hincapie R, Wegner J,  Ganzer L. 2015. Visualization of connate water replacement during flooding experiments using Glass-Silicon-Glass micromodels. EAGE First Break 33: DOI: 10.3997/2214-4609.201412500.
  • Hincapie R. 2016. Pore-Scale Investigation of the Viscoelastic Phenomenon during Enhanced Oil Recovery (EOR) Polymer Flooding through Porous Media. Papierflieger Verlag, Clausthal-Zellerfeld. ISBN: 978-3-86948-531-7.
  • Wegner J. 2015. Investigation of Polymer Enhanced Oil Recovery (EOR) in Microfluidic Devices that resemble Porous Media – An Experimental and Numerical Approach. Shaker Verlag, Aachen. ISBN: 978-3-8440-3520-9.
  • Ganzer L, Wegner J, Buchebner M, 2014. Benefits and Opportunities of a “Rock-on-a-Chip” Approach to Access New Oil. OIL GAS-EUROPEAN MAGAZINE 39: pp. 43-47.
  • Wegner J, Ganzer L. 2013. Numerical Analysis of Polymer Micro-Model Flooding Experiments. In Proceeding of 3rd Sino-German Conference “Underground Storage of CO2 and Energy”, Goslar, 21-23 May 2013, (ed. Hou MZ, Xie H, Were P), pp. 131-142. Springer-Verlag, Berlin Heidelberg.
Tagungsbände und Konferenzen
  • Tahir M, Hincapie R E, Gaol C, Säfken S, Ganzer L. 2020. Describing the Flow Behavior of Smart Water in Micromodels with Wettability Modified Pore Structures. Society of Petroleum Engineers. DOI: 10.2118/198948-MS.
  • Säfken S, Wegner J, Ganzer L. 2019. Wettability Alteration of Microfluidic Rock-on-a-Chip Devices to Replicate Reservoir Conditions. In DGMK-Tagungsbericht 2019-1, pp. 461-468. German Society for Petroleum and Coal Science and Technology, Hamburg.
  • Hincapie RE, Rock A, Wegner J, Ganzer L. 2017. Oil Mobilization by Viscoelastic Flow Instabilities Effects during Polymer EOR: A Pore-scale Visualization Approach. Society of Petroleum Engineers. DOI: 10.2118/185489-MS.
  • Rock A, Hincapie RE, Wegner J, Ganzer L. 2017. Rock-on-a-Chip Devices for High p, T Conditions and Wettability Control for the Screening of EOR Chemicals. 79th EAGE Annual Conference & Exhibition. DOI: doi.org/10.2118/185820-MS.
  • Wegner J, Ganzer L. 2017. Advanced Flow Behavior Characterization of Enhanced Oil Recovery Polymers. 79th EAGE Annual Conference & Exhibition. DOI: 10.2118/185814-MS.
  • Be M, Hincapie RE, Rock A, Gaol CL, Tahir M, Ganzer L. 2017. Comprehensive Evaluation of the EOR Polymer Viscoelastic Phenomenon at Low Reynolds Number. 79th EAGE Annual Conference & Exhibition. DOI: 10.2118/185827-MS.
  • Tahir M, Hincapie RE, Be M, Ganzer L. 2017. Experimental Evaluation of Polymer Viscoelasticity during Flow in Porous Media: Elongational and Shear Analysis. 79th EAGE Annual Conference & Exhibition. DOI: 10.2118/185823-MS.
  • Rock A, Hincapie RE, Wegner J, Födisch H, Ganzer L. 2017. Pore-scale Visualization of Oil Recovery by Viscoelastic Flow Instabilities during Polymer EOR. 19th European Symposium on Improved Oil Recovery. DOI: 10.3997/2214-4609.201700273.
  • Hauhs F, Födisch H, Hincapie R, Ganzer L. 2017. Novel Application of Foam and Air Flooding in Glass-Silicon-Glass Micromodels. In DGMK-Tagungsbericht 2017-1, pp. 249-259. German Society for Petroleum and Coal Science and Technology, Hamburg.
  • Rock A, Hincapie RE, Wegner J, Ganzer L. 2017. Advanced Flow Analysis of Viscoelastic EOR Polymers in Porous-media-resembling Micromodels. In DGMK-Tagungsbericht 2017-1, pp. 485-492. German Society for Petroleum and Coal Science and Technology, Hamburg.
  • Gaol CL, Wegner J, Ganzer L. 2017. A New Approach of Micromodels Construction Based on X-ray Micro-computed Tomography (µCT) from Core Plug. In DGMK-Tagungsbericht 2017-1, pp. 239-247. German Society for Petroleum and Coal Science and Technology,  Hamburg.
  • Elhajjaji RR, Hincapie RE, Tahir M, Rock A, Wegner J,  Ganzer L. 2016. Systematic Study of Viscoelastic Properties during Polymer-Surfactant Flooding in Porous Media. Society of Petroleum Engineers. DOI:10.2118/181916-RU.
  • Rock A, Hincapie R, Wegner J, Födisch H, Ganzer L. 2016. Pore-scale Visualization of Polymer Viscoelasticity Using Particle Tracing in Glass-Silicon-Glass Micromodels. 78th EAGE Conference and Exhibition. DOI: 10.3997/2214-4609.201600917.
  • Elhajjaji RR, Hincapie R, Ganzer L. 2016. Evaluation of Viscoelastic Behavior during Surfactant-polymer Flooding in Porous Media Using Microfluidics. 78th EAGE Conference and Exhibition. DOI: 10.3997/2214-4609.201600918.
  • Födisch H, Wegner J, Hincapie RE, Ganzer L. 2015. Impact of Connate Water Replacement on Chemical EOR Processes. Society of Petroleum Engineers. DOI: 10.2118/177196-MS.
  • Hincapie RE, Duffy J, O'Grady C, Ganzer L. 2015. An Approach to Determine Polymer Viscoelasticity under Flow through Porous Media by Combining Complementary Rheological Techniques. Society of Petroleum Engineers. DOI: 10.2118/174689-MS.
  • Wegner J, Hincapie RE, Foedisch H, Ganzer L. 2015. Novel Visualisation of Chemical EOR Flooding Using a Lab-on-a-Chip Setup Supported by an Extensive Rheological Characterisation. Society of Petroleum Engineers. DOI: 10.2118/174648-MS.
  • Hincapie R, Ganzer L. 2015. Assessment of Polymer Injectivity with Regards to Viscoelasticity: Lab Evaluations towards Better Field Operations. Society of Petroleum Engineers. DOI: 10.2118/174346-MS.
  • Födisch H, Hincapie R, Wegner J, Ganzer L. 2015. Visualization of Connate Water Replacement during Flooding Experiments Using Glass-Silicon-Glass Micromodels. 77th EAGE Conference and Exhibition in Madrid. DOI: 10.3997/2214-4609.201412500.
  • Muhammad T, Hincapie R. 2015. Coexistence of Shear and Elongational Components of Flow Paths through Porous Media during Polymer-Flooding Applications. 77th EAGE Conference and Exhibition. DOI: 10.3997/2214-4609.201412503.
  • Hincapie RE, Duffy J, O'Grady C, Ganzer L. 2015. Using DLS Microrheology, Rotational Rheometry and Microfluidics to better understand the Behaviour of Polymeric Materials for Use in Enhanced Oil Recovery Applications. 10th Annual European Rheology Conference.
  • Muhammad T, Hincapie R. 2015. An Experimental Approach to Analyze Polymer Mechanical Properties. International Student Petroleum Congress & Career Expo.
  • Romero JA, Hincapie R. 2015. Sand Pack Processing for Polymer Flooding Injectivity Purposes: Workflow and Experimental Set-Up. International Student Petroleum Congress & Career Expo.
  • Herbas J, Wegner J, Hincapie R, Ganzer L. 2015. Comprehensive Micromodel Study to Evaluate Polymer EOR in Unconsolidated Sand Reservoirs. 19th Middle East Oil & Gas Show and Conference. DOI: 10.2118/172669-MS.
  • Ganzer L., Wegner J, Buchebner M. 2014. Benefits and Opportunities of a “Rock-on-a-Chip” Approach to Access New Oil. In DGMK-Tagungsbericht 2014-1, pp. 385-394. German Society for Petroleum and Coal Science and Technology , Hamburg.
  • Qi M, Wegner J, Falco L, Ganzer L. 2013. Pore-Scale Simulation of Viscoelastic Polymer Flow using a Stabilized Finite Element Method. Society of Petroleum Engineers. DOI: 10.2118/165987-MS.
  • Qi M, Wegner J, Ganzer L. 2013. Numerical Study of Viscoelastic Polymer Flow in Simplified Pore Structures using a Stabilized Finite Element Model. In DGMK-Tagungsbericht 2013-1, pp. 453-462. German Society for Petroleum and Coal Science and Technology, Hamburg.
  • Zheng S, Hincapie R, Ganzer L. 2013. Laboratory and Simulation Approach to the Polymer EOR Evaluation in German Reservoir Characteristics. DGMK-Tagungsbericht 2013-1, pp. 431-440. German Society for Petroleum and Coal Science and Technology, Hamburg.
  • Kouchaki S, Hincapie R, Ganzer L. 2013. Rheological Evaluation of Polymers for EOR: Proper Procedures for a Laboratory Approach. DGMK-Tagungsbericht 2013-1, pp. 367-378. German Society for Petroleum and Coal Science and Technology, Hamburg.
  • Födisch H, Wegner J, Hincapie-Reina R, Ganzer L. 2013. Characterization of Glass Filter Micromodels Used For Polymer EOR Flooding Experiments. In DGMK-Tagungsbericht 2013-1, pp.  325-334. German Society for Petroleum and Coal Science and Technology, Hamburg.
  • Hincapie R, Wegner J, Buchebner M, Zheng S, Ganzer L. 2012. Laboratory Investigation of Parameters Affecting Viscosity of Enhanced Oil Recovery Polymers. In DGMK-Tagungsbericht 2012-2, pp. 495-500. German Society for Petroleum and Coal Science and Technology, Hamburg.
  • Wegner J, Ganzer L. 2012. Numerical Simulation of Oil Recovery by Polymer Injection Using COMSOL. COMSOL Conference 2012.
  • Hincapie R, Wegner J, Buchebner M, Ganzer L. 2012. Experimental Set-Up and Workflow for Polymer Flooding Processes Using Micromodels. In DGMK-Tagungsbericht 2012-2, pp. 501-504. German Society for Petroleum and Coal Science and Technology, Hamburg.
  • Wegner J, Buchebner M, Hincapie R, Ganzer L. 2012.Development of a Numerical Polymer EOR Toolbox to Facilitate the Design and Interpretation of Micromodel Flooding Experiments. In DGMK-Tagungsbericht 2012-2, pp. 505-514. German Society for Petroleum and Coal Science and Technology, Hamburg.

Sponsoren und Partner

Dieses Forschungsprojekt der Deutsche Wissenschaftliche Gesellschaft für Erdöl, Erdgas und Kohle e.V. wird unterstützt von ExxonMobil Production Deutschland GmbH, Neptune Energy Deutschland GmbH und Wintershall DEA.