
BIBULOUS
A drop-in BibTeX replacement based on style templates.

Bibulous Documentation
Release 1.0

Bibulous developers

June 15, 2013

CONTENTS

1 Getting started 3
1.1 Kile: replacing BibTeX with Bibulous . 3
1.2 Modifying WinEdt5 to replace BibTeX with Bibulous . 4

2 Guidelines for writing bibliography style templates 7

3 Instructions on how to report a bug to the Bibulous development team 9
3.1 Where to report a bug . 9
3.2 How to report a bug . 9

4 Developer guide 11
4.1 Guidelines for Python coding style . 11
4.2 Overall project strategy and code structure . 11
4.3 Parsing BIB files . 12
4.4 Parsing AUX files . 13
4.5 Parsing BST files . 13
4.6 Writing the BBL file . 13
4.7 Name formatting . 14
4.8 Generating sortkeys . 14
4.9 Testing . 15
4.10 Generating the documentation . 15

5 Overview 17
5.1 Example . 17
5.2 Installing and instructions . 18
5.3 Developers . 18
5.4 License . 18

6 Indices and tables 19

i

ii

Bibulous Documentation, Release 1.0

Contents:

CONTENTS 1

Bibulous Documentation, Release 1.0

2 CONTENTS

CHAPTER

ONE

GETTING STARTED

For general users, all that is needed is place the main bibulous.py file into the Python path. For users interested
in using the auxiliary commands, bibulous_authorextract.py and bibulous_citeextract.py must
also be in the Python path, and must be in the same directory as the main file.

1.1 Kile: replacing BibTeX with Bibulous

1. In your .tex file, change the filename of the \bibliography{...} command to the filename for the
appropriate Bibulous-format bibliography style template (.bst file).

2. In Kile, go to the menu bar and select Settings > Configure Kile. Select Tools > Build and choose
BibTeX from the Select a tool menu (see the figure). To the right of the menu, after you select BibTeX
you should see “Choose a configuration for the tool BibTeX”. Below the drop-down menu, select the button
“New” and type in the name Bibulous (or whatever you prefer to call your new tool). Below, in the General
tab, type in the location of the bibulous.py file. And in the Options field, type %S.aux.

3

Bibulous Documentation, Release 1.0

That should be it. In case your default setup is different, you can also check the Advanced tab settings and verify that
they are as shown in the second figure. (That is, Source extension is set to aux, and Target extension is
set to bbl.)

1.2 Modifying WinEdt5 to replace BibTeX with Bibulous

1. Go to the menu Options > Execution Modes. In the Console Applications menu on the left hand
side, select BibTeX. Then replace the three Command Line fields with the ones shown in the figure, replacing
the files paths with the ones correct for your installation of Python and bibulous.py.

4 Chapter 1. Getting started

Bibulous Documentation, Release 1.0

2. Note that the following are definitions of WinEdt registers:

%f = full path of active file (= %p/%n.%t)
%n = name of the active file
%p = the path of the active file
%t = the extension of the active file
%q = the path relative to the main file (i.e. for subdirectories)
%b = WinEdt’s local working directory (not the tex file directory)
%B = path to the WinEdt executable file

1.2. Modifying WinEdt5 to replace BibTeX with Bibulous 5

Bibulous Documentation, Release 1.0

6 Chapter 1. Getting started

CHAPTER

TWO

GUIDELINES FOR WRITING
BIBLIOGRAPHY STYLE TEMPLATES

1. Comments begin with #. (A single # indicates a symbol and not a comment!)

2. A line which begins with an entrytype name followed by an = sign defines the bibliographic format for that
entrytype. For example:

article = <authorlist>, ‘‘<title>,’’ <journal>, <volume>, [<startpage>--<endpage>|<eid>|] (<year>). [<note>.]

Here the article entrytype will be typeset so that the list of authors is followed by the article title in double
quotes, the journal name in standard font (i.e. not italics), the volume number, the page range, and the year.

3. Square brackets [] indicate an optional entry; any required entries which are not defined in the BibTeX database
file (.bib file) are replaced with ‘???’ by default. Optional arguments is undefined are simply skipped. If a | is
present within the square brackets, it indicates an “elseif” argument (if not the final | within the brackets), or
an “else” argument (if the final |). The “else” indicates a required argument, so if you want an optional entry
to be replaced with something, you can use [option|] — the use of an empty cell inside the square brackets
indicates that we simply use the default replacement for an undefined required argument (i.e. ???). If you want
all of the cells to be optional, then use |”] in the last cell – that is, the last cell should be an empty string. For
now, the format currently does not allow nesting of brackets.

4. If you need the square brackets or | symbol as formatting elements, then simply use {\makeopenbracket},
{\makeclosebracket}, or {\makeverticalbar}. If you need the angle brackets as formatting ele-
ments, then use {\makegreaterthan} and {\makelessthan}. Note that the curly brackets are needed
here so that when Bibulous replaces the command with the appropriate symbol, that symbol can be used cor-
rectly in LaTeX commands.

5. Unlike BibTeX, Bibulous does not change the capitalization state of any entry variables. It assumes that the
authors have defined it the way they want it.

6. If an entrytype format definition contains only another entrytype on the right hand side of the =, for example:

inbook = incollection

then this simply defines the format for the entrytype on the left hand side as identical to that of the entrytype
given on the right hand side.

7. The second type of data present in the file are the formatting options. These are defined by writing options
followed by a period and then the option name, for example:

options.authorlist_format = ’first_name_first’

8. Bibulous only allows string variables to be inserted into a given position within an entrytype template, and all
Bibulous variables are surrounded with angle brackets. Thus, when typesetting the bibliography, Bibulous will

7

Bibulous Documentation, Release 1.0

replace the variable <authorlist>with the string stored in the authorlist field of the current entry being
formatted. An example list of variables one may choose to use is:

<authorlist>, <booktitle>, <chapter>, <edition_ordinal>, <editorlist>,
<eid>, <endpage>, <institution>, <journal>, <nationality>, <note>,
<number>, <organization>, <publisher>, <school>, <series>, <startpage>,
<title>, <version>, <volume>, <year>.

As one can see, these primarily consist of the various fields one can expect to see within a given BibTeX-
formatted database file. This list is actually freely extensible. You can add whatever additional variables you
like, so that if you use a special video field in your database, you can insert that field’s value into the template
wherever <movie> is located.

9. Note that several fields are defined by default which are not directly from the bibliography database. These are
authorlist, editorlist, startpage, endpage, and edition_ordinal. These fields are derived
from the original database file, but have been reformatted.

10. Although the entrytype template definitions listed below are in alphabetical order, that can be put in any desired
order within the file. (The exception to this rule is that if a definition consists of, for example:

inbook = incollection

then the incollection template must already be defined. Also note that two entrytype names are special
and so cannot be used on the left hand side of the equals sign here: comment and preamble.

11. Options for citation_order include

• citenumber or none (the default)

• citekey

• alpha (uses three letters of author’s last name plus last two numbers in the year)

• nyt or plain (uses the first author’s last name, the year, and then the title)

• nty, nyvt, anyt, anyvt, ynt, and ydnt

where the different letters indicate (as in Biblatex) n = name (i.e. author’s last name), y = year, t = title, v =
volume, and a = alphabetic label (where the user is implementing some bibliography front-end that prints out
alphabetic labels inside the .aux file). The d here means that the order should be descending rather than the
default of ascending.

12. A user wanting a localized form of quotation should use \enquote{<title>} rather than ‘‘<title>”,
and add \usepackage{csquotes} to the preamble of the LaTeX document.

8 Chapter 2. Guidelines for writing bibliography style templates

CHAPTER

THREE

INSTRUCTIONS ON HOW TO REPORT
A BUG TO THE BIBULOUS

DEVELOPMENT TEAM

3.1 Where to report a bug

Send an email to the users_mailing_list. Once it’s confirmed as a bug, someone, possibly you, can enter it
into the issue tracker. (Or if you’re pretty sure about the bug, go ahead and post directly to the developers mailing
list, developers_mailing_list. But if you’re not sure, it’s better to post to [users mailing list] first;
someone there can tell you whether the behavior you encountered is expected or not.)

3.2 How to report a bug

First, make sure it’s a bug. If Bibulous does not behave the way you expect, look in the documentation and mailing
list archives for evidence that it should behave the way you expect. If the documentation and archives do not contain
enough information to tell you whether the behavior is a bug or is expected behavior, go ahead and ask on the users
mailing list first users_mailing_list. Also check that you are running the most recent version of Bibulous. It
may be that the bug has already been fixed.

Once you’ve established that it’s a bug, the most important thing you can do is come up with a simple description and
reproduction recipe. For example, if the bug, as you initially found it, involves five files over ten commits, try to make
it happen with just one file and one commit. The simpler the reproduction recipe, the more likely a developer is to
successfully reproduce the bug and fix it.

When you write up the reproduction recipe, don’t just write a prose description of what you did to make the bug
happen. Instead, give a copy of the exact series of commands you ran, and their output. Use cut-and-paste to do this.
If there are files involved, be sure to include the names of the files, and even their content if you think it might be
relevant. The very best thing is to package your reproduction recipe as a script, that helps a lot.

In addition to the reproduction recipe, we’ll also need a complete description of the environment in which you repro-
duced the bug. That means:

• Your operating system

• The Python version you are running under.

• The release and/or revision of Bibulous.

• Anything else that could possibly be relevant. Err on the side of too much information, rather than too little.

9

Bibulous Documentation, Release 1.0

Once you have all this, you’re ready to write the report. Start out with a clear description of what the bug is. That is,
say how you expected Bibulous to behave, and contrast that with how it actually behaved. While the bug may seem
obvious to you, it may not be so obvious to someone else, so it’s best to avoid a guessing game. Follow that with the
environment description, and the reproduction recipe. If you also want to include speculation as to the cause, and even
suggest how the code may be modified to fix the bug, that’s great.

Post all of this information to the developers mailing list, developers_mailing_list, or if you have already
been there and been asked to file an issue, then go to the Issue Tracker and follow the instructions there.

Thanks! It’s a lot of work to file an effective bug report, but a good report can save hours of a developer’s time, and
make the bug much more likely to get fixed.

10 Chapter 3. Instructions on how to report a bug to the Bibulous development team

CHAPTER

FOUR

DEVELOPER GUIDE

4.1 Guidelines for Python coding style

1. Note that you can mix 8-bit Python strings (ASCII text) with UTF-8 encoded text as long as the 8-bit string
contains only ASCII characters.

2. Keep in mind when running into Unicode errors: reading a line of text from a file produces a line of bytes and
not characters. To decode the bytes into a string of characters, you need to know the encoding.

3. There are a couple of minor points where the Bibulous coding standards deviates from Python’s PEP8:

(a) A line width of 100 is the standard (not 80).

(b) In general, statements that evaluate to a boolean are placed within parentheses (i.e. if (a < b): rather
than if a < b:).

4. Many developers prefer to spread out code among a large number of small files. Bibulous is currently organized
in the opposite fashion – all of the code needed to run bibulous to create a .bbl file is located within a
single large file. Several auxiliary scripts exist, but these use bibulous.py as a core library file, and perform
different tasks (such as extracting sub-bibliography databases) than the main file was designed to do.

4.2 Overall project strategy and code structure

The basic function of BibTeX is to accept an .aux file as input and to produce a .bbl file as output. The aux file
contains all of the citation information as well as the filenames for the bibliography database file (.bib) and the style
file (.bst).

The basic program flow is as follows:

1. Read the .aux file and get the names of the bibliography databases (.bib files), the style templates (.bst files) to
use, and the entire set of citations.

2. Read in all of the bibliography database files into one long dictionary (bibdata), replacing any abbreviations
with their full form. Cross-referenced data is not yet inserted at this point. That is delayed until the time of
writing the BBL file in order to speed up parsing.

3. Read in the Bibulous style template file as a dictionary (bstdict).

4. Now that all the information is collected, go through each citation key, find the corresponding entry key in
bibdata. If there is crossref data, then fill in missing values here. Also create the “special fields” here. Finally,
from the entry type, select a template from bstdict and begin inserting the variables one-by-one into the template.

Because the .bib file is highly structured, it is straightforward to write a parser by hand in Python: the
parse_bibfile() method converts the .bib file contents into a Python dictionary (the Bibdata class’

11

Bibulous Documentation, Release 1.0

bibdata). The .aux file is even easier to parse, and the parse_auxfile() method converts the citation in-
formation into the Bibdata class’ citedict dictionary. The .bst style template file, having its own domain
specific language, is much more complicated, so that its parser is generated from a grammar written for the Antlr
parser generator. (This creates Bibulous’ only external dependency – Java – which we may be able to eliminate if we
use a Python-based parser generator, such as pyparsing.)

The Bibdata class thus holds all relevant information needed to operate on a bibliography and generate the output
LaTeX-formatted .bbl file.

4.3 Parsing BIB files

4.3.1 parse_bibfile()

The strategy for parse_bibfile() is to find each individual bibliography entry, determine its entry type, and save
all of the text between the entry’s opening and closing braces as one long string, to be passed to parse_bibentry()
for parsing. To gather the entry data string, we first look for the next line that starts with @. On that line, we look
for a string after the @ followed by {, where the string gives the entry type. After we know the entry type, we look
for the corresponding closing brace. If we don’t find it on the same line, then we read in the next line, and so forth,
concatenating all of the lines into one long “entry string” until we encounter the corresponding closing brace. Once
we have this extended “entry string” we feed it to parse_bibentry() to generate the bibliography data. Once we
have come to the end of a given entry, we continue reading down the file looking for the next ‘@’ and so on.

Although this approach effectively means that we have to pass twice through the same data, dealing with brace-
matching can otherwise become a mess since the BibTeX format, since it allows nested delimiters, is not directly
compatible with regular expressions.

4.3.2 parse_bibentry()

parse_bibentry() only needs to worry about a single entry, and there are four possible formats for the entry
string passed to the function:

1. If the entrytype is a comment, then skip everything, adding nothing to the database dictionary.

2. If the entrytype is a preamble, then treat the entire entry contents as a single fieldvalue. Append the string onto
the preamble value in the bibdata dictionary.

3. If the entrytype is a string (i.e. an abbreviation), then there is no entrykey. Get the fieldname (abbreviation
key), and the remainder of the string is a single field value (the full form of the abbreviated string. Add this
key-value pair to the abbrevs dictionary.

4. If the entry is any other type, then get the entrykey, and the remainder of the string is a series of field-value pairs.

Once it determines which of these four options to use, parse_bibentry() extracts the entry key (if present), sepa-
rates out each of the fields (if more than one is present) and loops over each field with a call to parse_bibfield()
to extract the field key-value pairs.

4.3.3 parse_bibfield()

parse_bibfield() is the workhorse function of the BIB parsing. And because of BibTeX’s method for allowing
concatenation, use of abbreviation keys, and use of two different types of delimiters ("..." or {...}), this function
is a little messy. However, for the format of a given field, there are four parsing possibilities:

12 Chapter 4. Developer guide

Bibulous Documentation, Release 1.0

1. If the field begins with a double quote " then scan until you find the next ". Add that to the result string. If the
ending " is followed by a comma, then the field is done; return the result string. If the ending is followed by a
then expect another field string. Scan for it and append it to the current result string.

2. If the field begins with { then scan until you resolve the brace level. This should be followed by a comma, since
no concatenation is allowed of brace-delimited fields. Otherwise issue a syntax error warning.

3. If the field begins with a # (concatenation operator) then skip whitespace to the next character set, where you
should expect a quote-delimited field. Append that to the current result string.

4. If the field begins with anything else, then the substring up until the first whitespace character represents an
abbreviation key. Locate it and substitute it in. If you don’t find the key in the abbrevs dictionary, give a
warning and skip.

4.4 Parsing AUX files

The .aux file contains the filenames of the .bib database file and the .bst style template file, as well as the cita-
tions. The get_bibfilenames() method scans through the .aux file and locates a line with \bibdata{...}
which contains a filename or a comma-delimited list of filenames, giving the database files. Another line with
\bibstyle{...} gives the filename or comma-delimited list of filenames for style templates. The filenames
obtained are saved into the filedict attribute – a dictionary whose keys are the file extensions aux, bbl, bib,
bst, or tex.

The parse_auxfile() method makes a second pass through the .aux file, this time looking for the citation
information. (Auxiliary files are generally quite small, so taking multiple passes through them cost very little time.)
Each line with \citation{...} contains a citation key or comma-delimited list of citation keys – each one is
added into the citation dictionary (citedict), with a value corresponding to the citation order.

4.5 Parsing BST files

(This part is changing at the moment, and so the documentation is not available yet.)

4.6 Writing the BBL file

Now that all the information is available to Bibulous, we can begin writing the output BBL file. First we write a few
lines to the preamble, including the preamble string obtained from the .bib database files. Next we create the
citation list – the citations listed in the sorting order as defined in the style template files. (This requires a surprising
amount of code to get right – see Generating sortkeys below.) We loop over each citation in the desired order, and
insert cross-reference information to fill in missing fields, and parse each name field (see the “Formatting names”
subsection below). The cross-referencing and name parsing steps can be delayed until later on in the processing chain,
but would require more complex code to do there, so doing them here keeps the code simpler without sacrificing
much speed. (The assumption here is that the citation list is small, at least in comparison to the database, so that
limiting the difficult parsing to only those entries cited will allow significant improvement in speed.) Finally, at each
step in the loop, we call format_bibitem() to insert the database entry fields into the appropriate style template,
incorporating any extra formatting requested by the user in the style template file.

4.4. Parsing AUX files 13

Bibulous Documentation, Release 1.0

4.7 Name formatting

One of the more complex tasks needed for parsing BIB files is to resolve the elements of name lists (typically saved
in the author and editor fields). In order to know how these should be inserted into a template, it is necessary
to know which parts of a given person’s name correspond to the first name, the middle name(s), the “prefix” (or “von
part”), the last name (or “surname”), and the “suffix” (such as “Jr.” or “III”). These five pieces or each person’s name
are saved as a dictionary, so that a bibliography entry with five authors is represented in <authorlist> as a list of
five dictionaries, and each dictionary having keys first, middle, prefix, last, and suffix.

In order to speed up parsing times, the actual mapping of the author or editor fields to authorlist or
editorlist is not done until the loop over citation keys performed while writing out the BBL file. The func-
tion that product the list-of-dicts parsing result is namestr_to_namedict(namestr).

The default formatting of a namelist into a string to be inserted into the template is performed by
format_namelist().

4.7.1 create_namelist()

A BibTeX “name” field can consist of three different formats of names:

1. A space-separated list: [firstname middlenames suffix lastname]

2. A two-element comma-separated list: [prefix lastname, firstname middlenames]

3. A three-element comma-separated list: [prefix lastname, suffix, firstname middlenames]

So, an easy way to separate these three categories is by counting the number of commas that appear. The trickiest part
here is that although we can use and as a name separator, we are only allowed to do so if and occurs at the top brace
level.

In addition, in order to make name parsing more flexible for nonstandard names, Bibulous adds two more name formats
to this list:

4. A four-element comma-separated list: [firstname, middlenames, prefix, lastname]

5. A five-element comma-separated list: [firstname, middlenames, prefix, lastname,
suffix]

For each name in the field, we parse the name tokens into a dictionary. We then compile all of the dictionaries into a
list, ordered by the appearance of the names in the input field.

4.7.2 format_namelist()

Given a namelist (list of dictionaries), we glue the name elements together into a single string, incor-
porating all of the format options selected by the user in the template file. This includes calls to
namedict_to_formatted_namestr(), and to initialize_name() if converting any name tokens to ini-
tials.

4.8 Generating sortkeys

If the user’s style template file selects the citation order to be citenum or none, then creating the ordered citation
list is as simple as listing the citation keys in order of their citation appearance, which was recorded as the value in
the citation dictionary. If the user instead chooses the citation order to be citekey, then all that is needed is to sort
the citation keys alphabetically. Similar operations follow for the various citation order options, but the difficult lies

14 Chapter 4. Developer guide

Bibulous Documentation, Release 1.0

in correctly sorting in the presence of non-ASCII languages, and especially in the presence of LaTeX markup of non-
ASCII names. For a citation sorting order that requires using author names, any LaTeX markup needs to be converted
to its Unicode equivalent prior to sorting. Using unicode allows the sorting to be done with any input languages, and
allows the sorting order to be locale-dependent.

create_citation_list() is the highest-level function for generating the citation list. For each citation key,
it calls generate_sortkey(), which is the workhorse function for including all of the various options when
generating the key to use for sorting the list. A key part of the function is a call to purify_string(), which
removes unnecessary LaTeX markup elements and then calls latex_to_utf8() to convert LaTeX-markup non-
ASCII characters to Unicode. It is only after all of these conversions that the final sorting is performed and the sorted
citation list returned.

4.9 Testing

The suite of regression tests for Bibulous consist of various template definitions and database entries designed to test
individual features of the program. The basic approach of the tests is as follows:

1. Once a change is made to the code (to fix a bug or add functionality), the developer also adds an entry to the
test/test1.bib file, where the entry’s “entrytype” is named in such a way to give an indication of what
the test is for. For example, the entry in the BIB file may be defined with:

@test_initialize1{...

where the developer provides an author field in the entry where one or more authors have names which are
difficult to for generating initials correctly. The developer should also include at least a 1-line comment about
the purpose of the entry as well. To make everything easy to find, use the entrytype as the entry’s key as well.
Thus, the example above would use:

@test_initialize1{test_initialize1, ...

2. If the above new entry is something which can be checked with normal options settings, then the developer
should add a corresponding line in the BST file defining how that new entrytype (i.e. test_initialize1)
should be formatted. If different options settings are needed, then a new BST file is needed. Only a minimalist
file is generally needed: the file can, for example, contain one line defining a new entrytype and one line to
define the new option setting. You can define all of the other options if you want, but these are redundant and
introduce a number of unnecessary “overwriting option value...” warning messages.

3. Next, the developer should add a line \citation{entrytype} to the AUX file where the key is the key
given in the new entry of the BIB file you just put in (e.g. test_initialize1). This is the same as the
entrytype to keep everything consistent.

4. Next, the developer needs to add two lines to the test1_target.bbl file to say what the formatted result
should look like. Take a look at other lines to get a feel for how these should look, and take in consideration the
form of the template just added to the BST file.

5. Finally, run bibulous_test.py to check the result. This script will load the modified BIB and BST files
and will write out several formatted BBL file test1.bbl etc. It will then run a diff program on the output
file versus the target BBL file to see if there are any differences between the target and actual output BBL files.

4.10 Generating the documentation

From the bibulous repository doc/ subfolder, run make html to generate the HTML documentation. The result can
be found in doc/_build/html/, with index.html as the main file. To generate the PDF documentation, run
make latexpdf from the doc/ subfolder, with the result found at doc/_build/latex/Bibulous.pdf.

4.9. Testing 15

Bibulous Documentation, Release 1.0

16 Chapter 4. Developer guide

CHAPTER

FIVE

OVERVIEW

Bibulous is a drop-in replacement for BibTeX that makes use of style templates instead of BibTeX’s BST language.
The code is written in Python and, like BibTeX itself, is open source.

Bibulous developed out of frustration with the complexity of creating bibliography styles using BibTeX’s obscure
language, and also from the realization that because bibliographies are highly structured, one should be able to specify
them simply and flexibly using a template approach. There should be no need to learn a new language just to build a
bibliography style, and specifying a style should taken only a matter of minutes.

Bibulous incorporates this template approach, and at the same time implements many of the modern enhancements
to BibTeX, such as the ability to work with languages other than English, better support for allowing non-standard
bibliography entry types, functionality for enhanced citation styles, and increased options for author name formatting,
among others. The fact that Bibulous is agnostic to the names of fields in bibliography database files (.bib) means
that one can use the same database and same LaTeX commands for generating each of: a bibliography, a glossary,
a publications list for a CV, an annotated bibliography, and more, all within the same file and only by specifying a
different style template for each case.

Bibulous’ “style template” files allow a user to visualize the entire bibliography format structure in a concise way
within a single page of text. Moreover, the template is structured with its own Python-like mini-language, intended to
allow uses to create flexible formatting instructions quickly and easily. The example below illustrates the simplicity of
the format.

5.1 Example

For a very simple bibliography, consisting of only journal articles and books, a complete style template file may consist
of just two lines::

article = <authorlist>, \enquote{<title>,} \textit{<journal>} \textbf{<volume>}: [<startpage>--<endpage>|<startpage>|<eid>|] (<year>).[<note>]
book = [<authorlist>|<editorlist>|], \textit{<title>} (<publisher>, <year>)[, pp.~<startpage>--<endpage>].[<note>]

The <variable> notation indicates that the corresponding bibliography entry’s field is to be inserted into the tem-
plate there. The [...|...] notation behaves similar to an if...elseif statement, checking whether a given field
is defined within the bibliography entry. If not defined, then it attempts to implement the instruction in the block
following the next | character.

We can read the above article template as indicating the following structure for LaTeX-formatting the cited entry in the
bibliography (.bib file). For articles, we first insert the list of author names (formatted according to the default form),
followed by a comma. If no author field was found in the bibliography entry, then insert ??? to indicate a missing
required field. Next insert a quoted title, followed by an italicized journal name, and a boldface volume number (all of
these are required fields). Next, if the pages field was found in the entry’s database, then parse the start and end page
numbers and insert them here. If the pages field indicates that there was only one page, then use that instead. Or if
the pages field is not present, then check to see if the eid is defined, and use it instead. However, if none of these

17

Bibulous Documentation, Release 1.0

three possibilities are available, then insert the “missing field” indicator, ???. Finally, put the year inside parentheses,
and if the note field is defined in the entry, then add that to the end (following the period). If note is not defined,
then just ignore it.

One can read the book template similarly, and find that it has different required and optional fields. The simplicity of
the format allows one to customize databases to suit any use. For example, to use a bibliography entrytype <X> instead
of <book>, then all that is necessary is to go into the template file and change <book> to <X>. Of, if you wish to
add a new field, such as translator, then if it has been added to the .bib database file, one need only add some text
to the template, say (: <translator>) to insert that into every bibliography entry which has translator defined
for that entrytype.

5.2 Installing and instructions

Instructions for installing Bibulous, and for seamlessly integrating it into your normal LaTeX workflow, are given
in the INSTALL.rst file. Users can also consult the user guide (user_guide.rst) for further information and
tutorials. A FAQ page is also available.

5.3 Developers

Bibulous is a brand new project, and so it has so far been a solo effort. Anyone interested in helping out is welcome to
join; just send an email to the developers mailing list and we will try to help you get involved and show you the ropes.
And, this being the maintainer’s first open source project, any suggestions by experienced developers are welcome.

Guidelines for developers are given in developer_guide.rst, and includes an overview of the project’s strategy
and overall code structure. Note that a bug tracking system has not yet been set up for the project.

5.4 License

Bibulous is released under the MIT/X11 license, meaning that it is free and open source, and that it can be used without
restriction in other programs, commercial or not. The license is given in the file LICENSE.txt, the text of which is
reproduced here:

Copyright (c) 2013 Bibulous developers

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

18 Chapter 5. Overview

CHAPTER

SIX

INDICES AND TABLES

• genindex

• search

19

	Getting started
	Kile: replacing BibTeX with Bibulous
	Modifying WinEdt5 to replace BibTeX with Bibulous

	Guidelines for writing bibliography style templates
	Instructions on how to report a bug to the Bibulous development team
	Where to report a bug
	How to report a bug

	Developer guide
	Guidelines for Python coding style
	Overall project strategy and code structure
	Parsing BIB files
	Parsing AUX files
	Parsing BST files
	Writing the BBL file
	Name formatting
	Generating sortkeys
	Testing
	Generating the documentation

	Overview
	Example
	Installing and instructions
	Developers
	License

	Indices and tables

